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NATTONATL, ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1692

TETERMINATION OF BENDING MOMENTS IN PRESSURE-LOADED RINGS
OF ARBITRARY SHAPE WHEN 'DEFIECTIONS ARE CONSIDERED

By F. R. Steinbacher and Hsu ILo
SUMMARY

An analytical method has been derived for determining bending-
moment distribution in rings of arbitrary shape under internal pressure
loads, with the change of geometric shapes caused by the load being
considered. For the purpose of clarity, the method developed was
applied only to double-symmetrical pes. A differential-integral
equation has been derived for this purpose and its solution obtained
in the form of a trigoncmetric series.

Charts have been provided for two specific famllies of rings of
various proportions and flexibilities. Tests conducted on rings of
both families agree very well with the analytical calculations. For
rings belonging to or close to these femilies, the bending-moment
distributions and the deflections of the ring can be read directly
from the curves. For rings of entirely different shapes, an average
of 20 hours is necessary for the complete solution of the problem.
Examples have been given to show the method of obtaining the curves.

On comparing the present results with the results of solutions
in which deflections have been neglected, it is seen that the bending
moments previously computed have always been much too conservative.
The error introduced is considerable when the rings become more and
more flexible.

It is bellieved that by the use of this method curves can be
drawn for a typical frame in a fuselage and from these curves the
bending moments and deflections can be estimated for all simi
frames . -

INTRODUCTION

Numerous papers have been written regarding the design of the
rings for monocoque fuselages. All of them were based on the assumption
that the deflections of the ring caused by the loads are so small that
the internal bending moments and shear and axial loads will be unchanged
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by any small change in the geometric shape of the ring. However, the
error Introduced by neglecting the change in the geomstric shape
becomes more and more important as the size of the airplane increases
and more flexible rings are used to save welght. It is the obJect of
this paper, therefore, to take lnto account deflectlions when calcu-
lating the bending moments in rings.

The fact that the change of geometric shape has an Important
effect on the final bending-moment distribution iIn the rings can be
1llustrated by the beam-columm analogy of an initially curved bar under
axial tension loads. For the bar as illustrated in figure 1, the
initial bending moment is M = Py. If the bar is stiff and deflectlons
are small enough to be neglected, the final bending moment is the same.
But if the bar is flexible and the deflectlions are comparably large,
the final bending moment becomes

M= P(y - 8)

The difference between these two equations depends on the flexibility
of the bar and can be considerable for flexible bars.

In this paper two expressions for the bending-moment distribution
are derived. The first expression 1s obtalned by considering the
- action of the applied pressure and the.final shape of the deflected
ring. The second expression 1s obtained from the change of curvature
of the ring caused by the loads. If these two expressions are sot
equal, a differential-integral equation is obtained. The solution of
this equation gives the radial deflections of the ring and the bending-
moment distribution. Another formula is derived from which the angular
displacements can be determined when the radial deflectlons are Imown.

The rings discussed in this paper are assumed to be under only
internal pressure. The method recommended herein can be extended to
any system of external loads and is also applicable to rings of any
shape although only shapes of double symmetry are dlscussed in the
present paper. The following assumptions are made:

(1) The rings have regular and smooth shapes of the type
encountered in fuselage frames.

(2) The thickness of the ring is small compared with its radius.
Consequently the following formmla can be used with an extremely small
error. (See reference 1.)
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where

l/po original curvature at certain point of ring

1 /pl final curvature at corresponding point of ring after ring
is deflected

My internal bending moment built up because of deflections
of ring

EI  bending flexibility

(3) The ring is regarded as inextensible.

(4) The deflections of the ring are defined by its radial
deflections w and angular displacement . Both w and ¢ are
assumed to be large enough to be significant but small when campared
with the radius of the ring. Therefore, all terms can be neglected
containing second or higher powers or products of w/r or. . Also
all terms containing second or higher powers or products of the
following items are neglected: dw/r, &ew R Q¢—, and ﬁ, where r

agl ag2[’ @ 92
end € are the polar coordinates of the ring.

This work was conducted at the University of Michigan under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

SYMBOIS
a,b major and minor axis, respectively, of elliptical ring
8y 3PnsCpsdnsen,fn, &by Fourier coefficients
2
220
a

k' =&

R
q applied pressure load per unlit length
r,0 polar coordinates of original ring

ry,64 polar coordinates of deflected ring
Ty radius from origin to point A on original ring

8 arc length along circumference of ring
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nondimensional paremeter (EI/ qa3)
nondimensional parameter (E[/ qR@

displacements of a point on ring parallel to x- and y-axis,
respectively

radial deflection of ring
Fourier coefficient for radial-deflection function
bending flexibility of ring

certaln functions

height above x-axis of straight-line portion of rings of
family IT

axial stress at point A on ring

polar moment of inertia of equivalent ring of elastic weight
referred to original ring

polar moment of inertia of equivalent ring of elastic weight
referred to deflected ring

certain constants
bending moment

bending moment in ring if change of geometric shape of ring
is neglected

bending moment at point A on ring

bending-moment expression derived from consideration of
applied pressure load and final shape of deflected ring

bending-moment expression derived from consideration of
internal stress due to change of curvature of ring

bending moment in ring at point defined by @
certain constants
radius of clrcular arc of r:lngs' of family IT

area of equivalent ring of elastic weilght referred to
original ring
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Sl area of equivalent ring of elastic weight referred to
deflected ring

a angle of rotation of cross section of ring

Po radius of curvature at a point on original ring

Py radius of curvature at point on deflected ring corresponding
to py

¢ angular displacemsnt

THEORETICAL ANALYSIS

In the following analysis two expressions for the bending-moment
distributions are derived. The first expression is obtained from
consideration of the action of the applied pressure load on the final
shape of the deflected ring. The second expression is obtained from
consideration of the internal stress distribution due to change of
curvature caused by loading of the ring. Hereinafter the bending
moment corresponding to the first expression is designated by Mg

and the bending moment corresponding to the second expression is
designated by M;. By equating the two expressions, a differential-
integral equation which represents the equilibrium condition of the
final deflected ring is obtained. The solution of this differential-
integral equation determines the radial deflections of the ring and
the bending-moment distribution. From the radial deflections, the

angular displacements can be found from the nonextension theory, which
is treated in detail in appendix A.

Expression for M,

The moment M, is the bending moment determined from consideration

of the applied pressure load and the final deflected position of the
ring. Before the expression for M, 1is derived, a typical method

which has been used to determine the bending moment in the ring without
consideration of the change of geometrical shape of the ring is
discussed.

Let the shape of the given ring be defined by

r = r(0)
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The ring 1s assumed to be symmetricel with respect to both the x- and
y-axes. This simplification does not affect the validity of the method,
which can be used for any shape. The intensity of the intermal pressure
on the ring is designated by q. .

An imaginary cut is assumed at point A (see fig. 2) and two
unknowns E, and M, are introduced, where H, 1is the axlal force

at A (positive if in temsion) and M, 1is the bending moment (positive

if the outside fiber is under compression). There is no transverse
shear at point A because of symmetry. (See reference 2.) The ring
18 now statically determined.

The bending moment at any point C, defined by 6, as shown in
Pigure 2, can be expressed as

Mg = My - Hy(ry - 7g s1n 6) + 212
Substituting the expression
12 = rA2 + r92 - 2rpry 8in 6
in.to the foregoing equation, there results

My = A + Brg sin 6 + Crg° (1)

where

I q, 2
A=M -H7r +grA

A AA

B=EA - q_rA - (2)
q

c=23 -
2 ]

The terms A, B, and C of equation (2) are independent of ©.
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The angle of rotation @ of the cross séction at C and the horizontal
displacement u of point C, both relative to point A, are given by the

equations:
9@ = fo I-J'E-}- as (3)
A

c
ug =f %(rA - rg sinB)dS (k)

A

Hexre C can be any point on the ring. If A' - denotes the other end
of the ring at the cut, equations (3) and (4) should also hold at

point A'; and since there is no rotation nor horizontal displacement
at the cut, the followling relations are true:

GA' = f ldeEIds =0 (5)
Uy = f_%:-(rA - Ty sin e)ds

=-fM_g_;esmeas=o (6)

The substitution of
the following equations:

f—+3f Sineds+cfio—ds (7)

equation (1) into equations (5) and (6) yields
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o Tesmods ro2 8in%0 ds Tg3 8in 6 ds 8
ET + L BT +C I =0 ()

Because of the property of double symmetry,

fre sin g £2 = 0

3gmmedB_o
fre e ET _J

- (9)

Therefore

f as - (10)
ET

[ (11)

it follows that

® (12)
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After substituting equation (12) into equation (1), the expression
for the bending moment becomes
2 J
c -4
)

_ %(1-92 ] g) (13)

The expressions for J and S can be easlly memorized because they
are equlvalent to the polar moment of lnertia and area of the
corresponding ring of elastic welght, respectively. (See appendix B
for more details.)

Mo

It should be noticed that the bending moment given by equation (13)
is a function of r. Any change of shape of the ring changes the values
of r and consequently the bending moment also is different. All
papers in the past have neglected this change and have called My,

given by equation (13), the final bending-moment distribution. It is
shown later in the examples that the error is considerable for flexible
rings. The derivation of equation (13), however, leads to the
establishment of the expression for M,, which is based on the final

deflected .shape of the ring rather than the origlinal shape.

The final position of the deflected ring is defined by r; = rl(e) .

Because of the assumption that the ring is inextensible, or in other
words, ds = Constant, there immediately follows from equation (13)
the following expression for Ma whlch is referred to the final

deflected ring:

M, %Gf -5 (1)

2 ds
frlﬁ

where

&
|_l
]

o (15)
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Equation (14) glves the expression for the bending-moment distribution
from consideration of the applied pressure load and referred to the
final deflected position of the ring.

If the shape of the final deflected position of the ring is
known, the bending-moment distribution can be obtained immediately
from ec_r_ua:b:lon (14). The problem now 1s to find a method for deter-
mining the final deflected position of the ring, which, in turn,
depends on the bending-moment distribution.

Expression for M;

The moment M; is the bending moment built up from the Fiber

stresses resulting from the changes of curvature of the ring when it
1s deflected. To set up the relationship existing between the bending
moment Mj and the deflections 1s rather difficult, especially when
deflections in both directions (two-dimensional) are to be considered.
Timoshenko presents the derivation of a differential equation that
gives the relationship between the radial deflections and the internal
bending moment. (See reference 3.) The differential equation is

vhere w 18 the radial deflection of the ring. This equation 1s based
on circular rings and can be used only for rings that are nearly
clrcular. In the following paragraphs, a differential equation is
derived which is more general than the ome given by Timoshenko.

Referring to figure 3, let the original shape of the ring be
defined by r = r(6). An arbitrary point A, after loading, experiences
an angular rotation ¢ and a radial deflection w = BD. Tts new
position is completely defined by § and w, both of which are
functions of 6. The deflected shape of the ring is then represented
by the equation

r; = g(01) (16)

where \

rI=r+w
(17)
91=9+¢
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11
Fram the calculus, the original curvature of the ring at point A is
glven by

. o 5
> -r&r, 2(-5‘3>
1 d.92 ae
= = 37 (18)

and the curvature of the deflected ring C; &t corresponding point D
1s given by

o
a“r dr
o2 de;
1 _ 1 (19)
Py 23/2
2 dry
e
Since
dry
& B _wTrW pe (20)
B, @, L(e+g) 1+8
ao
-, 35
d'rl=d969 _r"+w" r' +w' gn (21)
a0,  Bi  (1+gn% (14413
ao

vhere r', w', and so forth indicate derivatives with respect to o,
equation (19) becomes
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(r + w)2 -(r + w)[._ll"_‘*'lf_"_ - -I”_+EL¢;, + 2(1" + w:)a

. 7(1 + ¢')2 (1 + ¢'):;2 1+ (22)
0y 513
lEr + w)2 + (H)]

From the assumption that the ring is inextensible, there exist
certain relationships between the angular displacements ¢ and the
radial deflections w. These relationships, as given in equations (23)
and (24), are derived from the nonextension theory. (See appendix A.)

'¢l=_¥_w?'-r? (23)
] 12 " ?
@) erpoFe)] oy @

The foregolng relations, when applied to circular rings for
vhich r = Constant and r' = O, become

¢l

H i

(25)

-

d" - -

H |4

which are the equations given by Timoshenko (see reference 3, p. 208)
for inextensible circular rings.
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Substituting equations (23) and (24) into equation (22) and
simplifying (see appendix C for details), the following equation is
obtained:

—

L )] b wlee )

Py 3/2 (26)
N2
rl}. + (_r_)]
r
Now, from equation (18),
1} 1 2
-r_ I
1 1 - + 2 r)
Po [ ~213/2
rll + (-I-'—)
r
Therefore
1+ _r_'_>2 (—‘—’ + X
1 1 r r r
PL R ) 3/2
r[l L (& ]
r
- w4+ w" (27)

But as already mentioned (assumption (2) of the INTRODUCTION) the
following equation 1s true:
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Therefore

w"+w=% 2\/14-(1'?')2 (28)

This equation expresses the relationship between the bending moment
at a certaln point on the ring and the radial deflection of-the ring
at the same polnt.

Equation (28) is valid not only for rings but can be applied to
any curved bars provided that the contour of the bar is regular and
smooth, the deflections are not too large, and the bar is inextensible.
Two extreme cases are glven in the following paragraphs for
11lustration.

First, for circular rings, r 1is constant and r' = 0.
Equation (28) reduces to

which 1s exactly the formula given by Timoshenko.

Next, consider a straight beam. Iet the origin be chosen at
infinity so that r = o and r' =0 at all points on the beam.
Equation (28) can be simplified as

2
- . RV vy}
B 2 o

For the x,y-coordinate system used in beam deflection, w = y,
r @ = dx. (See fig. 4.) Thus the foregoing equation becomes

&y n
a2 B

which is the familiar straight-beam formulsa.
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Differential-Integral Equation

Equation (1%) gilves the expression for M, which is determined

by consildering the applied pressure load and the final deflected
position of the ring. Equation (28) gives the expression for M.

It is determined by consildering the change of curvature of the ring
resulting from the loading. At the final deflected position of the
ring, these two bending moments M, and M; should be equal at every

point on the ring; that is,

Therefore,

n 1 4 Q_ﬁ _1:2
w +w..-§ﬁ(rl S)rz\,l+ r) (29)

In this equation, ry &and J, are referred to the final deflected
position. (See equation (1k).)

From equation (17),

s [ - (30)
r2 = (r+w?= r2|E. +2¥y (%)]
J

Therefore

Jy

2
f rlEIdB - (/ 2|1 +2¥ + (f)a:l%: (31)

Remembering the assumption that any term containing a power
of w/r higher than second can be neglected, equations (30) and (31)
become : ’

r12 = r° + 2ry (32)
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and

Putting these expressions into equation (29) yields

2
" =1 3(c2 -4._2 .@2\’ fd
w+w-2m<r +2rw - 5 S/wr E:Dr l+<r> (34)

Transferring all terms containing w to one side of the equation gives

v+ w- ]—‘gr3\’l + (?1—"-)2 + % -é:rQ\’l + (Er-'-)e / wr %
= % %[.Eh\’l + (3'1—.'-)2 - %re\’l + (%)2:] (35)

This is the final differential-integral equation with the radlal
deflection w as the only variable in the equation. The solution of
this differential equation and a method to make 1t more practical for
applications 1s dlscussed in the following section.

Solution of Differential-Integral Equation

The solution of the foregoing differentlal-integral equation can
be made by the following steps:

(a) All the ¥nown functions and unknown functions are expanded
into Fourier series, with known and unknown Fourler coefficlents.
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(b) By comparing the Fourier coefficients of both sides of the
equation, a system of simmultaneous equations is obtained.

(c) The solution of the simmltaneous equations gives the unknown
Fourler coefficients.

In carrying out these steps, rewrite equation (35) , using the
following relationship from the elementary calculus:

ds =r \’1 + .(-1-';')2]&9 (36)

Equation (35) then becomes
+%%§\’1+(2";')2 J[ w%‘z—I 1+ (%)2 a0
g\ | 28R T

In equation (37), let Fy, Fy, and F3 stand for the following
functions: .

n 3 1 r'2
LA L +(?)

3 1\2

BeE\1+E) ! (38)
L r\2

F3—;:;-T 1+ r?)
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The functions F,, Fp, and F3 are known for any given ring. The
equation becomes

v+ W - woFy + %Fl f Fyw d = %(1'3 - %Fl) (39)

Since F;, Fp, and F3 are known functions, they can be expanded
into Fourier serles with known coefficients. Therefore,

F = E an cos nf
n.=0,2,’-l----

Fp = E b, cos nf - (%0)
n=0,2,ll----

F3 = Cnh coB no
n-—0,2,’-|---- J

vhere ajp, b,, and ¢, are known Fourier coefficients. For double
symmetry, the case under study herein, n is always an even number.

Now let w be represented by a Fourier series with unknown
coefficients:

W = Z Ap cos md (k1)

m=0,2,ll-. o

where Ap's are to be determined. From the fact that the ring is

double-symmetrical and the extermal load system is also double-
symmetrical, the radial deflection w also is a double-symmetrical
function. Therefore all m's are even numbers.
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Differentiating equation (L41) twice gives

w'= - Z m2Am cos md (k2)
m=0,2,4...
Therefore,
v'a+ws= E (1 - mZ)Am1 cos md (%3)
m=0,2,ll-- -

The substitution of these relations into equation (37) yields

Z (l m)AmcosmB-q_ Z b cos nb Z A, cos md

m=0,2,4... n=0,2,%... m=0,2,k...
+% Z a, cos nf f z Apcos m8 Z a,cos nf b
n=0,2,k... m=0,2,h... n=0,2,k%...

=3 Z cncosnB--'J-.- ; 8n005n9> (4k)
2\n=0,2,%... S n-0,2,k...

In order to facilitate the camparison of the coefficlents on both
sides, equation (44) is simplified. First, consider terms involving
the integral sign in equation (44) as follows'

f Z Ay cos md Z an cos nf ad
10,2, %. ..

n=0,2,)-l----
2x
= _S_ Amf cos md Z an cos nb 4o
m=0,2,k... 0 n=0,2,k...
= 2Agagn + Z TApEm (¥5)

m=2,k4
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and equation (4%) becomes

Z (1 - 2)% cosmf - ¢ Z b, cos nd Aj cos mf

m_—0,2,ll---o ko,2,ll'--o m=0,2,ll----

a, cos nf (2nAnagy + Z "Akak>
n=0,2,k... k=2,Lk...

( Z cp cos nf - % Z an cos n9> (46)
n=0,2, eee n__.o’a,h_...

+
2] 5

o] [T

The second step is to simplify the second term of the equation
which contains the multiplication of two Fourier series. By actually
carrying out the multiplication,

E 'bn cos nf z Ap, cos md
n=0,2,%... m=0,2,k...

=do+d200529+dhcoslle+. . .

= Z d, cos md (¥7)
m=0,2,h...
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where

ay = Z(agby + Agbp + Al,_bo) +2 0 > (agby + An+1|-bn) L (48)

X; (l-ma)AmcosmB-q_ 4y cos md

HCRNPEy .
k= .e m=0,2,k4...

= % Z (cm - -S'Ia.m> cos md (%9)
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or

Z (1 - m2>Am - qdy + ‘%(214\050 + Z "Akal>am cos md

Iﬂ=0,2,,-|---- k=2,,-l-o.o

=%M,§ (cm--g-am) cos md (50)

Equation (U44) has been reduced to a more usable form in equation (50).

Now the Fourier coefficients on both sides of equation (50) can
be compared.

For m =0,

Bo - qdoﬁ(%ﬁoﬂﬁ?"%&%%%(% --S‘I@

’ oee

For m= 2,

For m= 4k,

-158), - qdy + 3 (21‘“0&0 + HZL ﬂkagau = %(cu - %ﬂ@

As many simultaneous equations as wanted cen be formed. The'solution
of m simultaneous equations gives m unknowns, Ags Boy By - o v

In actual cases, as shown in the exsmples in appendix E, three or
four simultaneous equations, which give three or four A, terms, are

sufficlently accurate for ordinsry rings. The following system is the
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system of four simultaneous equations which give four Fourier
coefficients, A;, Ay, Ay, and Ag. The following equations are

obtained from equations (51) and (48) after collecting the terms:

e~ o+ ) + Al o) + o+ o)
e 3o - 36 -39
AO(-qb2 + 2ﬂ§aoa2) + Ae(-3 - gbg - %bh + n%aeae>
+Au-‘2-1b2 -%b6+ n§a2a19 +116-%‘D1L -%bg + ’%’236) =%(c2 -%a2>
ao(-aby, + 2{%@0&1) + Ae(-gbz - 26 + ﬂ%auae)
+ 8y (-15 - qvg - %ba + T%ahah) + A6(-%b2 - %blo + ,%ahas)
o8
o (-apg + 2}%*0%) + Ae(‘%bu - 2bg + ﬂg%ae)

+ Au(--gbe - 'g'blo + %6&)9 + A6(-35 - gby - %bla + "%56‘16)

]
)
7 0

[6)

[}
e
A

23

- (52)
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With A, determined, the radial deflections can be obtained from

equation (41) and the bending-moment distributions, from equation (1k).
The angular displacements ¢ cen be determined by equations from the
nonextension theory (appendix A).

Angular Displacements

When the radlal deflections w are known, the angular displace-
ments ¢ can be found from the following equation, obtained from the
nonextension theory (appendix A).

¥o.ulrl (53)
r r r

¢r

The integration of equation (53) gives the angular displacements .

¢=-f‘;’ae-fl’r—'£rlae (5k)

Before evaluating the foregoing integration, the Fourler coeffi-
cients e, for the function 1/r must be determined:

= Z en cos nfd (55)

n=0,2,1l-- o

H |~

Since l/r is also a double-symmetrical function, the n's are even
numbers only. Therefore,

Z Ay cos mo Z en cos nd
m=0,2,k4

coe n=0,2,k4...

R4
]

= Z f, cos né (56)
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where
N
fo = %Aoeo + % M; Anen
fp = 2(8002 + Boso) + 2 mo;; (Aense + An+2°n) ? (57)

Ty = %(Aoeu + Agsp + Aueo) +3 n=04:: (An°n+l+ * An+he’n>

and

%
H 4
&
"

f(fo+f2cos29+f1|_cos’+9+. . .)d.e

fo0 + Z 2 gin mo (58)
n=2, k...

It is also kmown that

(1) _
5" (r) = Z ne, sin nd (59)
n=2,,'l-a--
and
W?-I-';=- mA, sin md Z ne, sin nb
m=0,2,4.. n=2,4...

= - &n cos nd (60)
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where
0%, O, e
=7 2 aln+2)(onse + Anyper)
n=2,L4... r (61)
a - %ka — ans 4) (Bnenst + Anhen) - 2(280) (202)
............................ J
Therefore,

(62)

|
4
M
B %
E
B

Substituting equations (58) amd (62) into equation (54), the
following form for ¢ 1s obtained:

£
-éoe+ Z — sin 9 - gy - Z -8n—n-sinn9>+c

I]=2,)-l-... n,=2’1|-o¢-

=N
l

-[@,-&;“ > fn;gﬂsmne}c (63)

n=2,k...

where C 1s the constant of integration.
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The present boundary conditions require that:

(l)a‘b 6=O, ¢=O

(64)

and (2) et 6 =3, ¢=0

For condition (1), equation (63) becomes

g(0) =0=0 + Z (0) + ¢C

ka,ll'. oo

C=0

For condition (2), equation (63) becomes

9-0- 69 ©
(fo - 30)121 =0

fo"%:O

And equation (63) becomes

$=- Z fL-—nisinne (65)
n=2,4...

which is the final form for the angular displacement #.
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The fact that f5 - g must be zero gives a good check on the
values of Ag, Ap, Ag - - - - This condition should always be
satisfied. A proof that this condition f5 - g; = 0 1is always
satisfied automatically is given as follows: From equation (5),

M
fmds_o

whereas from equation (28)

M w4+ w

Therefore,
f mr % f ¥+¥  4s
r2\[1 + (r_')
d r
2x "
= ¥Y+¥ g9 =0 (66)
r
o
Since
1_ E en cos nf
¥ n=0,2,k...
w+w'= E (l-mz)AmcosmB
m=0,2,k...
therefore
n
Y¥ivw _ (l-mz)Amcosme en cos nf
r m=0,2,h... n=0,2,k...
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where
m=,h-. (67)

Substituting into equation (66) gives

2x " 25
f E;Lde=f < + Z hncosnéde
0 0 n=2,k...

21:h0=0

or

B = 0

Comparing equations (57), (61), and (67), it can be seen that

Thus :E'o -~ & = 0 1is a condition which must be satisfled-.automatlically.

Sumary of Procedure

In the foregolng sections, there has been developed an analytic
method of f£inding the bending-moment dlstribution in double-symmetrical
rings of arbitrary shapes, acted upon by internal pressure loads. The
ring must have a regular and smooth contour, with its thickness
negligible compared to the radius. For such rings the procedures to
solve this problem can be summarized In the following steps:
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(1) Determine the Fourier coefficients of the Pollowing given
Functions:

1+ (.1'_')2 = cos nf
T = én
n=0,2, ove

F2=‘§ 1+(r_')2= Z b, cos nf - (68)
n=

1\2
F3=%Ill 1.,.(1'_)= Z ¢, cos nd

n.=0,2,1l-- oo

If the contoutr of the ring 1s expressed analytically in simple functions,
the Fourler coefflclents can be obtained by the usual method of
Integration. Otherwise, the coefficlents mmst be obtained by graphical
Integration, which 1s explained in appendix D.

(2) Perform the following integrations:

J=f§®=£2n§\’1+<§2w
=f%'i—=j;2ﬂr\’l+< ae

(3) Calculate the following constants by substituting the results
obtained from steps (1) and (2):

Koo = -bo + Efegag
by
K02="2—+'§a052

Koy = 3" R
b6 .
2

K06 = -3 * 5%°%6
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Epp = ~bo + %fheao
Epp = ~bg - 2; + Zapap
Keu=-b;2--2-6-+§aeau
Ke6=‘%'§8+'§aea6
= -by, + Bfaye,
Kyp = 2. %? + Zaya,

b
KM_ -bo -?8+-gaha4
b b
= o2 - 10
SO M

b b
- .78
K62"' ) 2+'§a‘6a2
_.b _bp
=-2 "5 e
bip I
Keg = Do =2 *5%%
1 Jd
%=§%'?@
%=’°2‘%9

(69)

o
o\
n
)
7o
o\
1
&
s
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(4) Substitute the foregoing constant terms into the following
system of slmulteneous equations:

a2 + Bog) + AgKop + Milou, + 406 = %
8oa0 + Aol 3+ Epp) + Mo, + Ao = % |
- (70)
Auno+AeKhe+Au<-%f+K1m>+A6Kus=Qu

A0K60+A2K62+ALK6L+A6<33+K66>=Q6

(5) For a given pressure load gq, the foregoing simultaneous
equations can be solved for Ay, Ay, Ay, and Ag-.

(6) The radial deflections w are given by the following equation:
w=A0+A2c0529+Ahcosh9+A6cos69 (71)

(7) In order to find the angular displacements, the Fourier
coefficient e, of the following functions should be first determined:

= Z ey cos nb (72)
n=0,2,4...

Then values of A, and e, are substituted into the following
equation to see if the condition f; - gy = 0 1is satisfled.

K =

o - & = Agep .,.-2]—' Z (l - na)Anen (73)

n-—-E,)-l-- .
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(8) Knowing en and A,, determine £, end g, as given in the
following equation:

fp = -2l(A0e2 + A2°o> + % o ; N (An°n+2 + An+29n)
£y = Z(Roey + Apep + Aysg) + 2 . ; (Anenst + Ansyen)

fg = %(1*096 + Ape), + Ajep + A6°o>

1
+5 n=0,§- N (An°n+6 + A11+6°n)

r (74)

23 mafT.‘.. 2(n +2) (Apensp + Anipen)

£
ol

nzz% n(n + &) (Anen-ﬂll- + Ah+hen> - 2he,

g = % Z n(n + 6)(An°n+6 + Am_66n> - h@2°h + A,l_ez)
n=2,4... J

(9) The angular displacements §§ can be obtained from the
following equetion:-

g=- > fn-gnsinne (75)
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(10) The moment distribution M 1is given by the following
equation:

=3r2-§+2m-§-2nl-\0a0+_22 "Anar> (76)

From the foregoilng procedures it can be seen that the main part of
the solution of the problem is the determination of the Fourier coeffi-
clents of several known functions. The rest of the procedures are simply
algebraic. On the average, it takes 20 hours to solve completely a
problem.

Preparation of Charts

Following the foregoing procedures, solutions have been obtalned
for two speclific famllies of rings. The first family consists of
elliptical rings (fig. 5(a)) with various eccentricities. The second
family consists of rings formed by two semiclircles and two straight
lines. (See fig. 5(b).) The ratio of the radius of the semicircle
to the helght of the stralght-line portion is variable. AIll rings are
assumed to be of constant EI.

Charts and tables are provided for both families of rings. The
Fourier coefficients an, by, ¢, and e, are given in tables 1 and 2
and are also plotted in figures 6 to 13. Since both families of
rings are of constant EI, the Fourier coefficients are obtained in
toerms of EI and the dimensions of the rings.

Values of J and S are glven in table 3 and also plotted
in figures 14 and 15. When these values are substituted into
equation (70) the simultaneous equations are obtained. For a given
value of q and EI, the simnltaneous equations can be solved for A,,

Ay, By, Ag - - - - Figures 16 to 21 give the values of A, for
various ratios of gq/EI.
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Knowing A, W, §, and M are obtained fram equations (71), (75),
and (76), respectively. The results are plotted in figures 22 to 42.

Two examples are given in appendix E to 1llustrate the foregoing
procedures in detail.

TEST

Test Specimens

Two steel rings were tested, one elliptical and the other made
up of two semicircles Joined by two straight lines. (See fig. 5.)

Test Apparatus and Procedures

Figures 43 and 44 show the test setup. The ring was tested in a
horizontal plane. Its clrcumference was divided Into a number of
segments with equal arc lengths. Wires, loaded equally, were attached
to these points. Each wire was led through a pulley, commnected to a
fixed horizontal ring in such a mammer that the pull on the test ring
was normally outward at each point. (See fig. 45.) The concentrated
loads were sufficlently close so that they could be assumed as
simmlating pressure.

In order to register the deflections of the ring, a wooden board
wes placed on top of the ring. The contour of the ring was traced on
the board, with marks denoting the division points, before and after
the ring was loaded, as shown in figure 46. The radial and angular
displacements can be measured dlrectly on the board.

Bending moments were found by electrlcal straln-gage readings at
three points on the ring. (See fig. 47.) The value of the effective EI
used was determined from bending tests on a specimen cut from the ring.

It might be mentioned that the test was at first tried with the
ald of a pressure bag. The ring was laid around the bag which was
blown up with compressed alr. Special devices were used to adjust the
pressure between the bag and ring so that the ring would be uniformly
loaded. The test was umsuccessful, however, since it was found that
uniform loading could be obtained only through long aend tedlous work.
(See fig. 48.)




36 NACA TN No. 1692

Test Results and Discussion

The test results are plotted in figures 49 to 5k, together with
curves obtained by the method developed in this paper. The agreement
between test data and calculated results is good.

In figures 51 and 54 where bending-moment distributions along the
circumferences of the rings are given, an additional curve is shown in
each Tigvre. These added curves represent the bending-moment distri-
bution when changes of geometric shapes of the rings caused by loading
are neglected. The symbol M, 1is used to designate the bending moment

calculated without considering the deflections of the ring. The value
of My can be found from the following equation:

“-56-9)

It can be seen from Pigures 51 and 54 that the bending moment
obtained without considering the change of geometric shape is too
conservative. At the point of maximum bending moment the difference

is quite large.
CONCILUSIONS

From an analytical method derived for the determination of bending-
moment distribution and radial and angular displacements of flexible
rings of arbitrary shape under internal pressure load, with the change
of geometric shapes caused by the load being considered, the following
conclusions can be made:

1. Results obtained by the present method showed good agreement
with test data and proved that results obtained when change of geometric
shape was not considered are inadequate for flexible rings.

2. Although only rings with double symmetry under intermal pressure
loads are discussed in the present work, the method can be extended to
include rings of any shape under any system of external loads.

University of Michigan
Ann Arbor, Mich., October 17, 1946
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APPENDIX A
NONEXTENSION THEORY

The deflections of a loaded ring can be completely defined by the
radial deflections w and angular displacements @, both of which are
functions of 6. (See fig. 3.) The deflections w and ¢ are
independent of each other if there are no additional conditions imposed
on the ring. They are definitely related, however, if the ring is
agsumed. to be inextensible. The nonextension theory glves the relation
between w and ¢ for such rings.

Timoshenko (reference 3, p. 208) has given the relation between
the radial deflections w and the tangential deflections v (which

correspond to angular displacements ¢ in the present case) for
circular rings as follows:

av

- 4 =0 Al

as v (A1)
For circular rings this can be written as

I¢'+W=O (A2)

where

g -8

This relation, however, 1s not quite accurate for rings of noncircular
shapes. A relationship between w and ¢ which is more general and
can be applied to rings of any shape is derived by means of several
steps as follows.

Arc Length in Polar Coordinates

Glven a small element AB = ds on an arc C.

OA=1r

OB=r+ dr
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With O as the center, OA as the radius, swing a circular arc which
will cut OB at D. Then

OD=0OA=r

BD = dr

and

&)

(as),5 = \(aD)2 + (ED)2

\[(r d9)2 + (ar)2

rae\/1+(;'_')2 (a3)

where the prime means derivative with respect to 6.

Increase of Arc Length Due to Angular Displacements

When point A (fig. 55) is allowed an angular displacement @
and point B an angular displacement @ + dff, with no radial deflectioms,
the new position of the element AB becomes EF. Since there is no
change of radius,

OE=0A=1r
F=0B=r1r+ dr

and the length of the arc EF 1s

o

(as)ge = VrP(a@0 + a)? 4 (ar)?

r de\[(l + ¢')2 + (-:5';92
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The increase of arc length due to the angular displacement ls (Ads)¢
where

r de\l(l + g2 <-r;'>2 - r dﬂ\/l + (r—r'>2 (a5)

Increase of Arc Length Due to Radial Deflections

The element of arc EF 1is now allowed to have radial deflections.
Point E moves radially to G end F, to H. (See fig. 56.)

The arc length of GH is then

GH = (d8)., = \J(GI)? + (1®)?
a =\

\/(w + 1)(a0 + af)2 + (aw + ar)?

(r+w)d.6\[(l+¢) +(r+w) (A6)

and the increase of length of the arc due to radial deflections alone
is (Ads),, where

' 2
(Ads),W = (r + w)d@\/(l + ¢')2 + (?-r—:j—g—)

-r (?..9\/(1 + ¢'),2 + (%)2 (a7)
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Equation for Deflections of an Inextensible Ring

The nonextension theory requires that the total increase of the

arc length due to both radial deflections and angular displacements
should be zero. In other words,

(Las)g + (Ads)y, =

From equations (AS5) and (A7),

or

Rl R =D S R D

(r+w)\/(1+¢')2{(r +W) \/u() (48)

2

Squaring both sldes and dividing by r“ yields

or

or

¢ Hfloors )] @
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or

r'w' _ w_'2
¢'=\/l-2?— (r) -1 (49)
1

Equation (A9) glves the relation between the angular displacements and
the radial deflections for an inextensible ring. Equation (A9) is
very general and can be used for rings of any shape.

Simplifications

Equation (A9) can be greatly simplified for rings, the
deflections w and ¢ of which are not very large when compared

with the radius of the ring. In other words, -;—’ <1 and § <« 1.
Also, it must be assumed that Erl K1 and ¢' << 1. Then any term

of power higher than two or products of the foregoing items can be
neglected. Equation (A9) becomes

(1+H)(1+2¢')=1-2.1‘_'H_1
r r r
or
1 t oM _ 3 _oxr'w
+2¢ + r r r
or

LEUREN . S S . i Al0
¢ r r r (a10)
Differentiate equation (A10) once as follows:
1 ' 2 ] 1
¢"=zr_+z__1+2(r__.) B S I < (a11)
rr r r T r r

Equations (Al0) and (All) are the relationship between § and w for
inextensible rings.
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For circular rings for which r = Constant and r' =0,
equations (A10) and (All) reduce to

W1

¢|

g" = -

HF!

which are exactly the relations glven by Timoshenko in reference 3.
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APPENDIX B
EQUIVALENT RINGS OF ELASTIC WEIGHT

The term "elastic weight" has been used by Mohr (reference k).
It is designated by "dW" and is defined as

aw = 48 (B1)

The equivalent ring of elastic weight i1s then defined as the ring,
the median of which has a shape which 1s examctly the same as the shape
of the originel ring, but the thickness t; of the equivalent ring

is 1/EI, where EI is the bending flexiblility of the original ring.

The cross-sectional area of the equivalent ring then is

A=ftlds=f%% (82)

and the polar moment of inertia of the equivalent ring is

I=j()r2tld.s=f%%r2 (33)

When equations (B2) and (B3) are compared with eguation (11), it is
seen that )

of the equivalent ring of elastic weight.




4 NACA TN No. 1692

APPENDIX C
DETATLED DERIVATION OF EQUATION (27)

The details of deriving equation (27) are as follows. Start with
equation (22), where

2— I'"-l-'w"_r"l"W" " r'+w'2
(e - s "”[(——l 32 wagd 9‘]* 2555

1
o, 32
1 oo - 3]
. L oz, r_'+z_>2
w\~ . W_r "> __r " r gn r " r
_Q--'-I') G+r)_§l+¢l)2 (l+¢')3¢ *e 1"'%'

' w'2
r(1+‘;’)31+ 1 (_+¢?,->

(l R E)a \1;. +

By neglecting all terms containing second or higher power or
products of the deflection items and using the binomial theorem,
the following relations are obtained:

r _xr',w gz’
r r r



r

(’iﬁ””) - @f ez - (&Y

836 e oS

o

Substitution of equation (C2) into equation (Cl) ylelds

L (1+2 (F—NL 20 ¢L>+2L) +.o_x_;:. 2¢(_>]
l r( +r>E-+<-r-) R p——

(c2)

269T *OH NI VOVN

&
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The foregoing equation can be further simplified by using
equations (A10) and (All). The numerator of eq_uation (c2) becames

" 2
Nmerator:l}—-l—'-+2<2-'-) +l’<_r_ + ¥ T ¥
T T r r rr T

] x;flér? ; u(%)i - E;l:?r? - 1‘<£r')3]

cwps-w g @] 2 @] @

and the denominator becomes

e SHIRICRE DR
ORI
_ ;(1 . 5)3E : (.r;ﬂ” 2@ pox! %’)3/ :

Therefore

Nlmera.tor (C 1)

1+W)E+():| 1+2% /2

L
Pl



JA
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or

n2]3/2
rE.+(—I%,->:I .
Y =Numerator<l.-33-..)(1-3"'—1'—-...)
1

g b @ 4h@] @

But from equation (18)

or
n2)3/2

N
Therefore

~\213/2 i '

NGRS O

or

G—_ A 1+<r>2_ I X

fL R T ¥
or
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APPENDIX D

GRAPHICAL METHOD TO DETERMINE THE FOURLER

COEFFICIENTS &, by, cp, AND ep

For rings, the contours of which cannot be expressed analytically
as simple functions, the following procedure is a graphical method for
quick evaluation of the Fourier coefficients a,, b,, c,, and e, of

the following functions:

r2 - 1\2 §
Fp == l+<—) = ancosne
EL r n=0,2,k...
3 NS
FE:E l-l—(r—) = bncosnB
r n=0,2,1+---
L A2
Fqa =X \[1 + (_r__) = ¢, cos nd
37 r n=0,2,k...
i_ E e cos nf
T n=0,2,k...

Teble 4 is filled in first. Then rows 7 to 18 are plotted
against the arc length s, and rows 19 to 22 are plotted against 0.
Let E7, Eg, - - - ]!:22 represent the area under the corresponding

curves. The Fourler coefficlents are

ao=%‘97 vy = 581y o =%15 eO:TZfEl9
ap = 1ug bp = 2By e = 116 e = 20
au=%1“9 by = E13 °h=ﬂh17 °h=:f"'121
aé=£,;ElO b6='l,'fﬂlu °6=?18 °6 = TEop
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APFENDIX E
EXAMPIES

Two examples are given in this appendix. A method of checking
the final results is also presented at the end of this appendix.

Example 1

Given an elliptical ring with the following data (see fig. 5(a)):
a=30,b=25.11, ET = 81,000, end gq = 10.

With the coordinate system shown in figure 5(a), the equation of
the ellipse can be expressed elther by

r=b\]1- 8100 (1) .

or by

H
n

a\r - cosp (E2)

where
- @)2 (£3)

The general procedures given under Summary of Procedure are
followed.

(1) In order to determine the Fourier coefficients a , b,
and c, of the following functions

2’ N\2 Z
F1=E-—I l+<£;-> =02)+ancosn9

252

N2
___ x_ cos nb
Fo (r) s ,ubn

2
rl
F3_EI l+() chcosne

o 0,2,k
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the following formmlas can be used:
; j e s () no a6
8y = ——————e = + (—) cos
:t(l + 80n) 0 ET T

/2 3 " A
4 T !
b = _-n:(l - n) \/o‘ 5 1+ (Lr) cos nP dp

/2 L
cﬂ:;(i%.:) o ]IE._I l+<r?) cos nf do

where

n
o

6011= if n

%

n=0 if nf0

Porforming the integration gives

ay = 0 .8&33&(%&2-)

= -0.1 2?
ap = -0.15059( 2=

2
0 .oo689(§1-)

ay

3
a

o'
o
[}

-0 .20669(93

o
n
I

ET

&)
0 .017(_)3 BT

o’
=
]
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L
0 =0 .716&(%:-)

Q
]

-0.25300 a
L
a

(2) In order to evaluate J and S +the following integration
should be performed:

J 21‘1‘3 1 r'ade Dgb
= ﬁ -l'(? = ‘)‘to
0
21tr r'2
S = o ﬁl+<;" de

Substituting in these equatlons gives

23
Jd = 1|--87580 E-E

S=5 .781&7(%)

Therefore

= 0.843358>

vl
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(3) When the values of a,, b,, c,, J, end S are substituted
into equation (69), the following constants are obtained:

Kgo = -0.00306(%13)
Koo = 0'03433(%9

3
_ a
Koy = 0 .00536<EI—>

Ko = 0.06867(;'—2)
Kpp = -0.77220(;—]3:)

3
&
Ky =0 .10278(E—I)

3
Kyg = -0 .01067<§I—)
3

a

a3
K)-I-’-I- = 0.1033 E_I

Q = 0.00280@)

6 ah
Qp = -0.06300( 2=

N
- a8
Q, = o.ou_18< H)
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(4) When these constants are substituted into equation (70), the
following equations are obtained:

Ag(t - 0.00306) + Ay(0.03433) + A),(-0.00536) = 0-00280a

A5(0.06867) + Ax(-3t - 0.77221) + Ay(0.10278) = -0.06300a

Ao(-0.01067) + A2(0.10278) + Ah_( -15t + 0.10338) = 0.01118a (%)
where
t = BL_
qad

The parameter + 1s nondimensiopal and 1s a measure of the flexibility
of the ring. In the present example + = 0.3.

(5) Solving the preceding simultaneous equaticns gives
Aq = 0.00503a

A, =0 -03778a

Ay = 0 .0016T7a

(6) The radial deflection w is then given by the following
equation:

w =45 + Ay cos 260 +A1|_cosl|9

= (0.00503 + 0.03778 cos 29 - 0.00167 cos 48)a (E5)

The values of w/a for various values of the angle 6 are given in
table 5 and also plotted in figure 24.
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(7) The Fourier coefficient e, can be obtained from the
following formula:

" /2 1 o
€n = nil + 80n) 0 r cos

Performing the integration glves

1.0
% =
op = 0:09752
a
o = —0.0021
4 = a

Substituting A, and e, into equation (73) glves
. fo - % = Aoeo - 105.A262 - 7-5A)+el|_ = -0.00001 = O

Therefore the results are checked.

(8) The coefficients £, and g, are obtained from equation (74)
as follows:

0.04188

s

-0 .00001

Iy

& = -0.00100

8’4- = ’0000737
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(9) The engular displacement @ is, therefore,

AN
]

-%(fa - 52) gin 20 - %{(fll- - g,_,_) sin 40

-0.02144 sin 26 - 0.00184 sin Lo

(86)

Values of §§ are given in table 6 and are also plotted in figure 31.

(10) Finally equation (76) is used to calculate the bending-
moment dlstributlion. :

M=%E2-%+2rw-§<2:moao+§mkak)]

Since:
%(2,%&0 + g__h nhy F]) = 0.003028°
2

and the bending-moment distrlibutlion if the change of geometric shape
of ring is neglected is

=42 _J
% 2(:- S
the bending-moment distribution M can be expressed as

M= MO + qrw - 0.0015lg_a2

or

_M___:M.._L. ¥ _ 0.00151
qa2 qa2 * (a a 5) (27)

Values of M, /qz':t2 and M/g.a2 are given in table T; M/qa.2 is also

plotted in figure 38. The last term of equation (ET) is evidently the
correction needed when the change of goometric shape 1s considered. In

this particular case the correction term amounts to about 37 percent at
the point of maximm bending moment.
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Example 2

Given a ring as shown in figure 5(b), with the following data:
R=15,H=9, q = 10, and EI=8)-I-,375-

With the coordinate system as shown in figure 5(b), the equations
for the ring outline are

E=x cos 6 +\[1 - k2 s1x20 0<6< a

(E8)
r__1 <o<E
R sin 0 *S¥S3

where
k' =X
R
The procedure as followed for example 1 is also used for example 2

by means of the following steps:

(1) The Fourier coefficients are
2
- R
ag = 1.85526(EI)

2
=0. R_

R2
ay = -0.09307\ 55

3
= 2. R-
by = 2 55170( )
bp = 1.5756 REI3
2 3 . —
3
= -0. B2
by = -0 02956(EI>
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(2) The values of J

(3) The constants are

1692

= 3 585h2
op = 2.83W7(2-

e} = 0.159%

and

6]
!

d-
S

AL BIE BRS
N—” \_/

S are

3
= 16.033 :IE*E)

- 8. R
8 6832(EI)

1.8464R°

Kpg = -0 .06107(3-
K02 = =0 -26].92(ﬁ
Ky = O oh769(R3
_ - B3
Ko = 0.52399(EI
_ - B3
Knp = -2.3148 -
_ R3
Kp), = -0.814Y BT
3

= -0. R
Ko = -0 09538<EI
Kyp = -o.s:m:w(BE
Ky, = 2 5%57(33

w

\—/\_/

\/\_/

5T
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AN
Q = 0-07993\57

R’*)
Q=0 .69251<ﬁ

K
= R_
Q = 0.1656 EI)

(4) Introduce the nondimensional parameter +' = which is

equal to 2.5 for the present example. The following simmltaneovs
equations are obtailned:

ol
B

2.438934, - 0.26196A, - 0.047694; = 0.0T993R
-0.523944, - 9.814884, - 0.81417A) = 0.69251R

3 -0.095384, - 0.81417A, - L40.0UB5TA), = 0.16565R

(5) The solution of the foregoing equations is

Ay = 0.02503R
Ay = -0.0T166R

Ay = -0.00274R
(6) The radial deflection w is

w = (0.02503 - 0.07166 cos 26 - 0.002T4 cos L49)R (E9)

Values of w/R are given in table 8 and also plotted against 6 in
figure 28. )
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(7) The Fourier coefficilents e, are obtalned as

In order to check the results, equation (73) is used.

fo - g = -0-00005 = 0

(8) The coefficients f,, and g, are then evaluated.

fp = -0.06173

\ T £ = 0.00537
g = -0.00672

g, = -0.02698

(9) The angular displacements can be expressed by the following
equation:

¢ = 0.02751 sin 29 - 0.00809 sin 4o (E9)

Values of § are given in table 9 and also plotted in Figure 35.

(10) The bending-moment distribution is then given by the
following equation:

M _Y .

L ¥ - 0.01339 . (EB10)
q;Re q_R2 RR
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Valuss of M/qF® and M,[@R® are given in teble 10 end also plotted

in figure 57 for comparison. The maximum error introduced by
neglecting the change of geometric shape of the ring is about 35 percent.

Method of Checking

A method of checking the final bending moment and displacements
is glven. Example 2 18 used for illustration.

Asgsume the results obtalned from example 2 to be correct. Then

w = (0.02503 - 0.07166 cos 20 - 0.0027T4 cos L49)R
@ = 0.02751 sin 26 - 0.00809 sin 46

== 4+I¥_0.01339

Using the bending-moment expression, the deflections u and v,
parallel to the x- and y-axis, respectively, can be determined from
the original shape of the ring. The deflected ring defined by the

displacements u and v should agree with the deflected ring defined
by w and ¢.

The equations for the determlnation of u and v are

e e . .
u9=j; %racosa.d.s+rg coseL/:) ;—I-a'ds (E11)
6 e
Vg = %"'rms:!na.ds-resine g—I-"'ds (E12)
n/2 nf2

Values of u and v, obtained from equations (Ell) and (E12),
are given in table 11 and are also plotted in figure 58, together with
the deflections defined by w and . The agreement is very good.
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TABIE 1.- FOURIER COEFFICIENTS an, bp, cp, AND e, FOR

VARIOUS VALUES OF PARAMETER k

[Famt1y 1, elliptical rings]

¥ =1 - (5)2 0 0.1 0.2 0.3 0.k
aoQaI [ a2) 1.00000 | 0.94g34 | 0.89722 | 0.84334| 0.78735
ap(1/ed) o |-0.05002 |-0.10016 | -0.15059 | -0.20160
oy (21 /e2) 0 0-00066 | 0.00282 | 0.00689| 0.01354
b, (EI Ia3) 1.00000 | 0.92514 | 0.85052 | 0.7760L| ©.70146
ba(EI/a3) 0 |-0.07308 |-0.14210 1-0.20669 | -0.26638
bh_<EI /a3) 0 0.00177 | 0.00731 | 0.01703| 0.03151
co(EI /a‘5 1.00000 | 0.90187 | 0.80749 | © .7-1681; 0.62988
02(E1 /ah) 0 -0.09493 |-0.1794k | -0.25300 | -0.3149%
ch(EI/al) 0 0.00313 | 0.01251 | 0.02817| 0.0501%

ep(a) 1.00000 | 1.02722 | 1.05984 | 1.09979| 1.15013
ep(a) 0 0.02705 | 0.05899 | 0.09752( 0.14519
ey (a) 0 -0.00018 |[-0.00082 | -0.00217 | -0.00LT0
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TABLE 2.- FOURIER COEFFICIENTS a,, b,, c,, AND e, FOR

VARIOUS VAIUES OF PARAMETER k'

Eﬁ‘amily IT, rings formed by two semicircles

and two straight lines)]

r=X . . .

k' =2 0 0.2 0.4 0.6
ao(m/32> 1..00000 1.26456 1.54062 1.85526
aa(EI /R"> 0 0.19985 0.46057 0.78339
all_(EI /122) 0 -0.03398 -0.06703 -0.09307
bo(EI/R3) 1.00000 1.42356 1.9375% 2.55170
by(E1/83) 0 0.33803 0.85649 1.57561
vy (E2/53) 0 -0.04495 -0.06725 -0.02956
c (EI/R‘9 1.00000 1.60789 2.45013 3.585u2

o . . . .
02(E1 /Rl‘) 0 0.50563 1.41205 2.83147
ch(EI/RlD 0 -0.05622 -0.03567 0.15947

oo (R) 1.00000 0.89756 0.83083 0.78538

ex(R) 0 -0.07617 ~0.13812 -0.18829

e, (R) 0 0.01605 0.02677 0.03070




TABLE 3.- VALUES OF J AND 8

Family T
¥ el- (:2_)2 0 0.1 0.2 0.3 0.k
iz [ad) 6.2832 5.81080 5.34397 1.87560 3. 4OTHL
B(EI/a) 6.2832 6.12302 5.95614 5. 78147 5.59762
%('}E) 1.0000 0.94933 0.89722 . 0.84335 0.78737
a
]
Femily IT
gy . 0.k 0.6
k= E 0 0.2
s(zz/=) 6.0832 8.9452 12.1736 16.0332
8(ELI/R) 6.2832 7.0832 7.8832 8.6632
g(;];) 1.0000 1.2628 1.54k2 1,846k
W
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TABIE 4.- GRAPHYCAL METHOD TO IETERMINE THE FOURIER

COEFFIUIENTS apn, bp, ony, AND op

65

[Boo appenstz 2]

Row Ttem Procedure Results at -
1le 0] 100 ] e00 | 300 | mo | 50| 60 | 700 | 0 | 900
2ir
3|=
L | con 29
5 | cos %8
6 | cos 6
7 | »/fEX (2)/(3)

8 | (x/Ex) cos 20 | (7) x (4
9 | (r/EI) cos ko | (7) x (5)

10 | (x/ET) cos 68 | (7) x (6)

1 | 22/ (2) x (7) -

12 | (+2/gT) cos 28| (11) x (%)

13 | (x2/EI) cos ho| (11) x (5)

1 | (x2/ET) cos 63 ] (11) x (6) '

15 | r3/ex (2) x (1)

16 | (x3/EI) cos 28] (15) x (¥)

17 | (x3/8T) cos 8 | (15) x (5)

18 | (x3/ex) cos 68| (15) x (6)

19 j1/e 1/(2)

20 | (1/r) cos 28 | (19) x .(h)

21 | (1/r) cos ko | (19) x (5)

22 | (1/r) cos 68 | (19) x (6) ,

23 | Arc length, 8




TABIE 5.- RADIAL DEFIECTTONS w/a AT VARIOUS VATOES OF 6

E‘anily I. ¥ =0.3; t = o.3:|

1 D 3 4 5 6 7
( ;g) cos 26 cos 49 | 0.03778 x (2) | -0.00167 x (3) | 0.00503 () ‘(’é‘)’ . (6)

0 1.00000 | 1.00000 0.03778 -0 .00167 0.00503 0.0411L
10 93969 T6604 -03550 -.00128 00503 03925
20 76604 | .17365 .0280% - 00029 .00503 .03368
30 50000 [ -.50000 .01889 00084 .00503 02476
4o 17365 | -.93969 .00656 00157 .00503 01316
50 -.17365 | -.93969 ~.00656 00157 ,00503 .0000L
60 -.50000 | -.50000 -.01889 .0008% .00503 -.01302
70 - T660L |  .17365 -.0289h - .00029 .00503 -.02420
8o -.93969 .T6604 -.03550 -.00128 .00503 -.03175
0 -1.0000C | 1.00000 -.03778 - .00167 .00503 -.034k2

S HAA S
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TABIE 6.- ANGULAR DISPLACEMERTS {# AT VARIOUS VALUES OF 6

E‘amily I. ¥ =20.3; ¢ = o.3.]

1 2 3 5 5 6 7
az gin 26 sin 40 |-0.0214%k x (2) | -0.00184 x (3) # =(z(.:‘)1-4)- (5) '(dzg)
0 0 0 0 0 0
10 34202 | .64279 -.00733 -.00118 -.00851 -.hg
20 .6heT9 .98481 -.01378 -.00181 -.01559 -.89
30 86603 | .86603 -.01857 - 00159 -.02016 -1.16
4o 98481 34202 -.02111, ~-.00063 -.02174 ~1.25
50 08481 | -.34202 -.02111 .00063 -.02048 -1.17
60 86603 | -.86603 -.01857 .00159 -.01698 -.97
70 64279 | -.98481 -.01378 .00181 -.01197 - .69
80 34202 | -.64279 -.00733 .00118 -.00615 -.35
90 0 0 o 0 0
RAAS
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TABLE 7.~ HENDING-MOMENT DISYRIBUTTON

[Fﬂmily I- ke=003i t-0°3i g'—lE=°l8h'335J
. : 4

1 2 3 L 5 6 T 8
; e | GF-33 o3 | i '3
o | | G R ; ¥ R
= (3) - 0.84335 | = %(h) from table 5 (7) - 000151
0 0.83666 | 0.70000 =0 .14335 -0.07168 0.0k134 0.03L4k42 -0.03877
10 .840ko0 70639 -.13696 -.06848 -03925 03299 -.03750
20 .85173 “T2545 - 11790 -.05895 .03368 02869 -.03177
30 .86989 15675 - 08660 -.04330 02476 09154 -.02330
4o .89394 79904 -.04131 -.02216 01316 01176 -.01189
50 92172 84956 00621 .00310 0000 .0000% -.00163
60 .95038 90322 05987 0299k -.01302 -.01237 01606
T0 9758k 95226 .10891 05446 -.02420 -.02362 02933
& -99365 98725 -14390 07195 -.03175 ~.03155 .03889
Q0 1.00000 1.00000 .15665 .07833 -.03442 ~.034h2 .0h240
W
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TABLE 8.- RADTAL DEFLECTIONS w/R AT VARTOUS VAILUES OF 6

[Famtiy 7T, x' = 0.65 ¢ = 2.5]

1 2 3 L 5 6 7
(dgg) cos 28 cos 48 |-0.07166 x (2){-0.0027k x (3)| 0.02503 | E = (4) + (5) + (6)
0 1.00000 | 1..00000 -0.07166 -0,00274 0.02503 -0 .04937
10 .93969 TEEOL -.0673L - 00210 02503 -.Ohlis1
20 <7660 17365 - 05489 - 00048 02503 -.0303%
30 50000 | -.50000 -.03583 00137 02503 -.01217
ko 17365 | -.93969 -.01244 00257 02503 01516
50 -.17365 | -.93969 0124k 008257 02503 04004
60 -.50000 | =.50000 .03583 00137 02503 06223
T0 - T660L 17365 05489 - 00048 02503 0794
&J "'-93969 -76&’4‘ 006731|- 'QOOEJ.O 00503 00%27
90 -1.00000 | 1.00000 07166 - 00274 02503 09395
<A~

260T "ON NI VOVH



TARIE Q.- ARGUILAR DISPLACEMENTS ¢ AT VARTOUS VALUES OF 6

Efamily TI. X' =0.6; t'= 2.5.]

2 3 L 5 6 T
(d_@eg) gin 20 sin 6 ]0.02751 x (2)] -0.00809 x (3) | ¥ = g‘;ld“:)b) o
0 0 0 0 0 )
10 .34202 64279 0091 - 00520 .00421 2k
20 64279 .08481, 01768 - .00T9T 00971 .56
30 86603 86603 02382 -.00701 .01681 .96
Lo 98481 .34202 02709 -.00277 02432 1.39
50 .98481 -.34202 02709 00277 .02986 1.71
€0 .86603 -.86603 .02382 .00701 .03083 1.77
70 64279 -.98481 .01768 00797 02565 1.h7
80 .34202 - .64279 00941 00520 01461 .84
90 0 0 0 0 0
~ RS

0l
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TAEIE 10 .- BENDIWG-MOMENT DISTRTBUTION

Eﬂ‘am:l.lyII X'=0.6; t' = 5%—2: axpsu]
1 ] 3 L 5 6 7 8
o | | | @2 35| 3 s
wa| £ | & . tR LR
m (3) - 18464 | = (B)/2 | from teble 8| = (2) x (6) | = (5) + (T) - 0.01339
4] 1.60000 | 2.56000 0.71360 0.35680 -0 .04937 ~0.07899 0.26Lkp
10 1.58545 | 2.51365 66725 33363 - .Ohhll -.0T041 24983
20 1.54252 | 2.37937 53297 26649 -.03034 -.04680 20630
30 1.47356 | 2.17138 .32408 .16245 -.01217 -.01793 .13117
ho 1.38226 | 1.91064 0642k 03212 01516 02096 .03969
. 50 1.27376 | 1.62246 -.2236k4 -.11197 .0LOOk 05100 -.07T436
60 1.15469 | 1.33331 -.51309 -.25655 .06223 07186 -.19808
70 1.06418 | 1.13248 -.71392 -.35696 L0794k 08454 -.28581
& 1.01542 | 1.03108 -.8153¢2 -.hoT66 09027 .09166 -.30939
90 1.00000 | 1.00000 - .84640 -.42320 09395 09395 - .3k26h
W

Yot
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TABIE 11.- DEFIECTIONS u AND v AT
VARIOUS VATUES OF €

[Family II. k'=0.6;t's= 2.52[

1 2 3
(a08) u/R R

0 0 -0.0506k4
10 .00001 -.0k649
20 .00L4L6 -.03553
30 .01549 -.02158
40 .03270 -.00920
50 .05300 -.00182
€0 07165 0
70 .08u2h 0
8o .08726 0
90 -08939 0
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Original

Deflected

Figure 1.- Initially curved bar in original and in
deflected shape.

0

l Figure 3.- Angular rotation and

] radial deflection of a point on
Figure 2.- Forces and moments a ring after loading.

on a pressure-loaded ring.

Figure 4.- Coordinate system used in beam deflection,




() FamilyI.

(b) Family II.

Figure 5.- Shapes of rings used in numerical examples.

KL
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1.0 ]

by, in terms of ad/EI
o

K2

Figure 7.~ Fourier coefficients b, for various values of
w2 -1 - (b)2
parameter k. k“ =1 =) -
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Figure 8.- Fourier coefficients C,
parameter k. kK2 =1 - (2)2 .

for various values of .
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Figure 11.- Fourier coefficients b, for various‘values of
parameter k'. k' = H/R.
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Figure 12.- Fourier coefficients ¢, for various values of
parameter k'. k' = H/R.
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Figure 13.- Fourier coefficients e, for various values of

parameter k'. k'

= H/R.
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t= 1.

A

D,

=

-.10

Ap/R
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1 4
Figure 20,- Values of Ay/R for various ratios of Eqi t!
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Figure 21.- Values of A4/R for various ratios of qu t = el k'=H/R.
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Figure 22,- Values of w/a for varlous positions around ring from t = 0.20to t = 0,50,
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Figure 24.- Values of w/a for various positions around ring from t = 0,20 to t = 0.50,
_EIL 1, =1 - (b\2 . .
t= %% k2 =1 (g) 0.8.
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Figure 25.- Values of w/a for various positions arownd ring from t = 0,20 to t = 0.50.
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Figure 43.- Top view of test setup.
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Figure 44.- General view of test setup.
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Figure 45.- Schematic drawing of test setup.

1,2,3,4... Division points before loading
11,24,31,4', . Division points after loading

Figure 46.- Wooden board to register deflections.
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Figure 48.- Pressure bag used to load ring. (Uniform load could

not be obtained.)
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NACA

Figure 55.- Increase of arc length due to angular displacements.

Figure 56.- Increase of arc length due to radial deflections.
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Figure 57.- Bending-moment distribution. k' = % =06 t'= %I- E:.lg = 2,5.
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